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Natural compounds are evolutionary selected and prevalidated by Nature, displaying a unique chemical diversity and a
corresponding diversity of biological activities. These features make them highly interesting for studies of chemical
biology, and in the pharmaceutical industry for development of new leads. Of utmost importance, for the discovery of
new biologically active compounds, is the identification and charting of the corresponding biologically relevant chemical
space. The primary key to this is the coverage of the natural products’ chemical space. Here we introduce ChemGPS-
NP, a new tool tuned for handling the chemical diversity encountered in natural products research, in contrast to previous
tools focused on the much more restricted drug-like chemical space. The aim is to provide a framework for making
compound classification and comparison more efficient and stringent, to identify volumes of chemical space related to
particular biological activities, and to track changes in chemical properties due to, for example, evolutionary traits and
modifications in biosynthesis. Physical-chemical properties not directly discernible from structural data can be discovered,
making selection more efficient and increasing the probability of hit generation when screening natural compounds and
analogues.

Traditionally, natural products have been essential sources of
new drugs, and many drugs on the market were initially synthesized
to mimic the actions of molecules found in Nature.1,2 More than
half of the new chemical entities introduced between 1981 and 2002
were natural products or natural product related, and the investiga-
tion of natural products as therapeutics in Western pharmaceutical
industry reached its peak just before this period.2

During the 1990s, the leading source of new compounds in drug
discovery shifted from natural products to high-throughput synthetic
medicinal chemistry libraries. Combinatorial chemistry, through
rapid assembly of various chemical units, provided large numbers
of small, different but structurally related molecules for high-
throughput screenings (HTS) against particular targets. The drug
industry requested rapid screening and hit identification, while
investigation of natural products involved time-consuming extract-
library screening, bioassay-guided isolation, followed by laborious
structure elucidation. HTS enabled screening of large defined
libraries simultaneously at a rate that gave natural product research
competitive disadvantages. The synthetic medicinal chemistry
efforts together with HTS accelerated the synthesis, but unfortu-
nately did not fulfill the expectations of increasing the number of
lead candidates or drugs. Recently there seems to be a renewed
interest in natural products in drug discovery, and the procedures
used are becoming increasingly automated and made more effec-
tive.3,4

Natural products have a unique and vast chemical diversity and
can be regarded as biologically explored, evolutionarily selected,
and prevalidated by Nature. The probability that natural products
and derived structures will be biologically relevant is subsequently
high. Virtually all of the biosynthesized compounds have some
beneficial purpose for the producing organism, e.g., receptor binding
capacity,2,5 in order to interact with multiple proteins and thereby
eventually compete for resources, e.g., by avoiding predation.
Natural products also astonishingly often have advantageous
pharmacokinetic properties as a result of their mission of identifying

targets in the organism.6 These facts support the hypothesis that
natural products are exceptional design resources in drug discovery
and that screening natural products should yield high hit-rates. Of
utmost importance for discovery of new active compounds for future
therapies is the identification and charting of a biologically relevant
chemical space, and a primary key to this is the coverage of the
diverse natural products’ chemical space.2,7-9

The concept, chemical space, is often used instead of “multidi-
mensional descriptor space”, which is a region defined by the
descriptors chosen to describe a set of chemicals.10 Chemical space
can be compared to cosmic space, where chemical compounds,
instead of stars, occupy the space. It is enormous and basically
infinite, comprising all possible molecules. The total number, only
of small carbon-based compounds, is estimated to exceed 1060,11 a
number that will rise significantly when adding larger and more
complex bioactive molecules. A typical library file for the top
pharmaceutical companies contains at most a few million com-
pounds,12 which, following this discussion, offers only a modest
sampling of all the potential compounds that comprise chemical
space and most presumably comprise historic bias regarding
diversity. Considering the enormous number of possible compounds
and the given capabilities of HTS, the process of compound
selection and prioritization is crucial.13 To define the biologically
active chemical space, the entire chemical space first needs to be
populated to some extent.10 There is a critical need for tools able
to chart biologically relevant chemical space and provide an efficient
mapping device for selection of high-probability hits and prediction
of their properties and activities. ChemGPS-NP9 is a tool fulfilling
these requirements. It is tuned for exploration of the regions of
chemical space most likely to enclose compounds with activities
of interest, the biologically relevant natural products’ (NP) chemical
space. ChemGPS-NP also has the capacity of serving as a reference
system enabling characterization and comparison of molecules from
various research groups.

A chemical global positioning system (ChemGPS) based on
medicinal chemistry drug-like molecules14 has in a previous study,9

when applied to a set of natural products with cyclooxygenase
inhibiting activity, encountered numerous outliers, i.e., extrapola-
tions predicted outside the model. This result could indeed be
expected since natural products are extremely diverse and some-

* To whom correspondence should be addressed. Tel:+46-18-4714498.
Fax: +46-18-509101. E-mail: anders.backlund@fkog.uu.se.

† Uppsala University.
‡ Department of Medicinal Chemistry, AstraZeneca R&D Mo¨lndal.
§ GDECS Computational Chemistry, AstraZeneca R&D Mo¨lndal.

789J. Nat. Prod.2007,70, 789-794

10.1021/np070002y CCC: $37.00 © 2007 American Chemical Society and American Society of Pharmacognosy
Published on Web 04/18/2007



times very different in terms of structure and chemical properties
as compared to the much more restricted drug-like chemical space
for which ChemGPS was designed. Predicted outliers result in
extrapolation and thus uncertainty in accuracy and precision, which
is avoided using ChemGPS-NP.

A map of chemical space can be constructed by applying the
same principles as the Mercator convention in geography: Rules
correspond to dimensions (e.g., longitude and latitude), and
structures correspond to objects (e.g., cities and countries).14,15

Objects include a set of satellite structures similar to the satellites
used in the Navstar global positioning system16 and a set of core
structures. Satellites are intentionally placed outside the natural
products’ chemical space by having extreme values for one or
several of the desired properties and thereby marking the limits of
the chemical space of interest. In this way the positions that other
compounds may have are well covered. With ChemGPS-NP we
attempted to better represent the entire biologically relevant
chemical space. This was achieved by including complex structural
examples from the creative chemistry of Nature’s bioactive
molecules. In ChemGPS-NP selected main rules include aspects
of size, shape, lipophilicity, polarity, polarizability, flexibility,
rigidity, and hydrogen bond capacity. The rules and objects together
present a chemical space map. The ChemGPS-NP space map
coordinates aret-scores from principal component analysis (PCA)17,18

using a carefully selected subset of 35 descriptors that evaluate the
above-mentioned rules on a total set of 1779 chosen satellite and
core structures. Using ChemGPS-NP, novel structures are positioned
in chemical space via PCA score prediction. This overcomes
component rotation drawbacks of local models, which in addition
needs to be recalculated whenever a new set of compounds are
added or removed. Furthermore, ChemGPS-NP is a global model
and thus amenable to comparison with other models. Hence, it may
serve as a reference system by which large libraries can be
compared without scores changing as new structures are included
and predicted. It handles novel compounds via interpolation and
avoids extrapolations since the principal property space is well
covered, in all directions, by relevant satellite structures.

The natural products occupy a different and larger space than
that normally dealt with in medicinal chemistry.7,9 Feher and
Schmidt7 compared representative combinatorial, synthetic, and
natural product compound libraries on the basis of molecular
diversity and “drug-likeness” properties. Other groups have dis-
tinguished natural products, drugs, or other synthetic compounds
on the basis of structural similarity,8,19pharmacophore properties,19

or other molecular descriptors.20 These studies show that natural
products typically have a greater number of chiral centers and
increased molecular complexity as compared to synthetic drugs and
combinatorial libraries.7 Furthermore they often contain fewer
nitrogen, halogen, and sulfur atoms, but are noticeably more
oxygen-rich.7,20 Natural products also differ by having a higher
number of hydrogen bond donors and acceptors, by containing a
larger number of rings, and by being more structurally rigid.
Additionally, they have a broader distribution of, for example,
molecular mass, octanol-water partition coefficient, and diversity
of ring systems compared to synthetic and medicinal chemistry
compounds.7,19,20

Results and Discussion

Dictionary of Natural Products(DNP), released October 2004
comprising 167 169 compounds, was used as a starting set. In a
first step, the compounds (represented as SMILES) were pruned
of duplicate or erroneous data, resulting in 124 082 unique
structures. Subsequently 712 compounds with elements other than
H, C, N, O, F, P, S, Cl, Br, or I were removed, giving a set of
123 370 substances. Cluster analysis of the remaining DNP
compounds was performed, resulting in 10 859 clusters, of which
2307 were singletons, and 1376 clusters contained more than 50

substances. The cluster seeds of these 1376 clusters were selected
as a starting model for the emergent ChemGPS-NP.

As only 1D and 2D descriptors can be calculated from SMILES,
it is not possible to determine absolute configuration, and as a result
this does not form part of the overall calculation. Other studies
have demonstrated that such an approach is valid, in that those
analyses employing 3D molecular descriptors generally do not
perform any better than those using 2D descriptors.21-23 Also, for
many natural products the absolute and relative configuration have
not been determined.

A set of 926 molecular descriptors was primarily calculated for
all compounds used in this study, after which the molecular
descriptor array was pruned on the basis of a number of criteria.
For inclusion a descriptor should (1) have a comprehensible physical
meaning (descriptors that were not intuitively easy to interpret were
removed, since the goal was to deliver a tool that facilitates
understanding and explanation of chemical space); (2) reveal loading
in at least one component of the principal component analysis
(PCA)17,18model when terminated with statistical cross-validation
criterion (see below); (3) be able to distinguish between the
compounds (a descriptor whose value varies little within compounds
in a data set has little power to make a distinction between these
compounds20); (4) encode relevant aspects of molecular complexity;
and (5) describe at least any of the following intuitively important
molecular properties: lipophilicity, polarity, size/shape, hydrogen
bond capacity, polarizability, flexibility, and rigidity.

The final set of 35 descriptors24 is presented in Table 1.
Lipophilicity was estimated by the Ghose-Crippen ALogP.25-27

Polarity was estimated using descriptors calculating topological
polar surface area using nitrogen and oxygen contribution or
nitrogen, oxygen, phosphor, and sulfur contribution [TPSA (NO)
and TPSA (Tot)],28 hydrophilic factor (Hy),29 and the counts for
oxygen (nO), aliphatic/aromatic hydroxyl groups (nROH/nArOH),
and nitrogen (nN). Size- and shape-related descriptors included
molecular weight (MW), number of atoms (nAT), number of
carbons (nC), number of non-H atoms (nSK), and the Ghose-
Crippen molar refractivity (AMR).25 Hydrogen bond capacity was
measured by counting the number of nitrogen and oxygen as donor
atoms for hydrogen bonds (nHDon) and the number of nitrogen,
oxygen, and fluorine as acceptor atoms for hydrogen bonds
excluding nitrogen with positive formal charge, higher oxidation
states, and the pyrrolyl form of nitrogen (nHAcc). In addition, nO,
nN, and nROH/nArOH were used to estimate this capacity.
Polarizability was taken into account through summing atomic
polarizabilities (Sp) and calculating AMR. Flexibility and rigidity
were estimated by counting the total number of bonds (nBT), rings
(nCIC), and rotatable bonds (RBN)30 and by calculating the rotatable
bond fraction (RBF). The constitutional descriptorsssum of atomic
van der Waals volumes (Sv), sum of atomic Sanderson electrone-
gativity (Se), mean atomic van der Waals volume (Mv), mean
atomic Sanderson electronegativity (Me), number of non-H bonds
(nBO), number of multiple bonds (double, triple, and aromatic
bonds) in a molecule (nBM), aromatic ratio (ARR), number of
double bonds (nDB), number of aromatic bonds (nAB), number of
halogens (nX), and number of benzene-like rings (nBnz)swere
added together with the functional group counts: number of
aromatic carbons (sp2) (nCar) and number of amides (n_amid). As
a tool for discussions, the often referenced molecular property
descriptor known as Lipinski alert index (LAI)31,32 was included.

PCA17,18 was used to analyze the multidimensional data and to
create a global model of biologically relevant chemical space. PCA
can be used to find patterns in large data sets by filtering out noise
and reducing the dimensionality. Correlated variables are com-
pressed into a smaller number of new uncorrelated variables,
principal components (PCs), while retaining as much information
as possible. PCA is expressed in terms of scores and loadings, where
the scores are related to the objects and the loadings are related to
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the variables. The results can be viewed in score and loading plots,
where the relative distance between compounds in chemical space
becomes a measure of their similarity with respect to the particular
set of descriptors considered. The optimal number of PCs in the
ChemGPS-NP model was decided using cross-validation, with the
additional criterion that any descriptor should load in at least one
PC. Prior to PCA all data were centered and scaled to unit variance.

For the present study, 46 diverse compound sets comprising more
than 1 million unique compounds were compiled for the subsequent
validation (Supporting Information, Table 1). Special efforts were
made to include chemical substances of diverse biological origin,
including bacteria and eukaryotes from several phyla, as well as
organisms from different ecological niches.

Distance to the model in the X space33 after selecting the number
of components for new observations in the prediction set, DModXPS,
was calculated for all compounds predicted with the evolving
ChemGPS-NP and expressed as normalized distances in units of
standard deviations (SDs). To progressively expand the ChemGPS-
NP chemical space, each of the 46 data sets were predicted with
the current model as a training set. Compounds in a prediction set
with a predicted DModX larger than four SDs were considered
outliers, i.e., significantly different from the compounds used to
construct the model. Every such set of outliers would potentially
enhance the ChemGPS-NP coverage of the drug space and
successively yield a convergent ChemGPS-NP. The identified

outliers were all individually scrutinized. If there were less than
20 interesting outliers in a data set, they were all added to the
training set. If the prediction set contained more than 20 interesting
outliers, a subset was selected via the D-optimal design,34 or, if
they were more than 100, via D-optimal onion design.35,36D-optimal
designs select the most extreme points of the candidate set and
give a minimal set of selected compounds with maximum diversity.
D-optimal onion designs divide the set into a number of selected
layers where one separate D-optimal design is made in each layer.
Thereby it samples more evenly throughout the region. Selected
outliers were included in the next version of the training set,
ChemGPS-NP. This procedure was iterated until all 46 data sets
had been predicted.

Starting from the first training set of ChemGPS-NP derived from
DNP as explained above, the 35 ChemGPS-NP descriptors were
calculated. PCA was performed on the resulting data matrix. As a
first expansion of ChemGPS-NP a larger portion of the medicinal
chemistry training set ChemGPS14 was included to cover this
overlapping space. As the training set should be as diverse as
possible, we attempted to choose molecules from ChemGPS that
were as different as possible from the first version of ChemGPS-
NP. ChemGPS was predicted with ChemGPS-NP, and 283 com-
pounds that had a DModXPS larger than the critical value at a
probability level of 5% (here 1.17 SDs) were included in a new
version of ChemGPS-NP.

The ChemGPS-NP descriptors were subsequently calculated for
the next of the 46 data sets, and this set was positioned with PCA
score prediction based on the scores of the training set, ChemGPS-
NP. DModXPS was calculated, and the results were listed and
sorted in order of decreasing value. All compounds with a
DModXPS higher than four SDs were inspected and eventually
included in the training set as explained above. ChemGPS-NP was
then recalculated, and a new model was made with the selected
outliers included in the training set. A new data set was selected
as prediction set, and the same procedure was iterated. In the
beginning many compounds were added each round, and new
models calculated, but after a number of iterations there were no
additional outliers encountered according to the criterion.

The operational ChemGPS-NP includes 1779 compounds and
has predicted 619 382 compounds, without encountering any
outliers. The PCA modeling was terminated at eight PCs, after
inspection of cross-validation and loading vectors, as described
above (R2X was 0.92 andQ2(cum) was 0.73). A summary of the
eight PCs of the model is shown in Figure 1.

The interpretation of the dimensionality includes the weight of
individual variables in the data set, which indicate what principal
molecular properties are explained by the respective orthogonal
components (i.e., the PCs). The four most significant PCs explain
77% of the variance and can be interpreted as follows: PC1
represents size, shape, and polarizability, PC2 corresponds to
aromatic- and conjugation-related properties, PC3 describes lipo-
philicity, polarity, and H-bond capacity, and PC4 expresses
flexibility and rigidity. For a thorough description of PC5-PC8
we refer to Supporting Information Figure S1. Figure 2 shows the
score plot of the three most significant PCs with some of the
extreme chemical objects encircled and illustrated in Figure 3.

The ChemGPS-NP model is not limited to the present choice of
descriptors. The ChemGPS-NP descriptors described in this paper
were successfully replaced with VolSurf descriptors37 in order to
obtain consistent maps of the drug-like chemical space (data not
shown). VolSurf descriptors are based on 3D representations of
the included molecules and their surface properties, which constitute
an alternative and different starting point for the molecular
description. In this validation process VolSurf descriptors were
calculated for ChemGPS-NP. Latent variables were extracted by
applying PCA to the VolSurf descriptors set, and the main rules
that could be calculated with VolSurf were compared with the

Table 1. ChemGPS-NP Descriptors

number abbreviation description

10 MW molecular weight
2 Sv sum of atomic van der Waals volumes

(scaled on C atom)
3 Se sum of atomic Sanderson electro-

negativities (scaled on C atom)
4 Sp sum of atomic polarizabilites

(scaled on C atom)
5 Mv mean atomic van der Waals

volume (scaled on C atom)
6 Me mean atomic Sanderson electro-

negativity (scaled on C atom)
7 nAT number of atoms
8 nSK number of non-hydrogen atoms
9 nBT number of bonds
10 nBO number of non-hydrogen bonds
11 nBM number of multiple bonds
12 ARR aromatic ratio
13 nCIC number of rings
14 RBN number of rotatable bonds
15 RBF rotatable bond fraction
16 nDB number of double bonds
17 nAB number of aromatic bonds
18 nC number of carbon atoms
19 nN number of nitrogen atoms
20 nO number of oxygen atoms
21 nX number of halogens
22 nBnz number of benzene-like rings
23 nCar number of aromatic carbon atoms (sp2)
24 n_amid number of amides
25 nROH number of aliphatic hydroxy groups
26 nArOH number of aromatic hydroxy groups
27 nHDon number of donor atoms for hydrogen

bonds (N and O)
28 nHAcc number of acceptor atoms for hydrogen

bonds (N, O, and F)
29 Ui unsaturation index
30 Hy hydrophilic factor
31 AMR Ghose-Crippen molar refractivity
32 TPSA(NO) topological polar surface area using

N and O
33 TPSA(Tot) topological polar surface area using

N, O , S, and P
34 ALOGP Ghose-Crippen octanol-water

partition coefficient
35 LAI Lipinski alert index (drug-like index)
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DRAGON-related scores. This comparison, using 2D- and 3D-based
description, respectively, indicated that similar molecular property
dimensions were found by both approaches, which in turn validated
that a robust molecular principal property space has been estab-
lished.14

Previous work has addressed a ChemGPS aimed for medicinal
compounds,14 i.e., compounds within or near the so-called Lipinski
space.31 The ChemGPS led to an estimation of a chemical space
of six to eight dimensions, as determined by PCA. The inherent
engine of PCA comprises a search for data variance in new
orthogonal dimensions, which are ranked by their quantitative level
of explained variance (i.e., as estimated byR2 andQ2), such that
the first principal component explains more variance than the
second, which in turn explains more than the third, etc. Interestingly,
in ChemGPS, size and shape were explained in PC1, lipophilicity-
related parameters were described in PC2, and flexibility versus
rigidity and polar variables were explained in PC3.14 In the present
study an expansion was made by shifting the focus toward natural
products, and thereby a different order of explained properties was
revealed. In ChemGPS-NP lipophilicity is not explained until in
PC3, replaced as PC2 by aromaticity- and conjugation-related
properties of the compounds, while flexibility and rigidity properties
are explained in PC4. This is the most prominent manifestation of
differences between drug-like and natural products chemical space.
There can be several possible explanations for such a switch,
including the fact that medicinal chemists more often tend to explore
hydrophobic interactions between ligands and biological targets.31

This would subsequently lead to an artifactual increase in variation
in lipophilicity, resulting in a comparably larger variation in this
respect dealing with man-designed molecules. On the other hand,
one can see it from Nature’s perspective where evolutionary
pressure is the major driving force. Natural compounds in general
and secondary metabolites in particular are bound to function in a
generally hydrophilic environment. In order to retain, for example,
supposed defense substances in solution, highly lipophilic sub-
stances must be avoided and, hence, the variation in lipophilicity
is reduced by a functional constraint. With a lower degree of
variation follows a lower explained variance and consequently a
lower order of the corresponding principal component.

Considering dimensionality, the ChemGPS-NP model requires
eight rather than six PCs in order to reach an acceptable level of
explanation. The reason for the higher dimensionality of natural
products as compared to drug-like compounds appears logical. The
interactions/models employed in the drug industry are, for good
reasons, usually designed to address a simple and clear-cut situation,
a constraint seldomly encountered in Nature. More complexity
results in higher dimensionality. The reason eight dimensions are
sufficient for the ChemGPS-NP is a tradeoff between acceptable
explanatory power and comprehendible complexity.

Figure 1. Summary of the eight components of ChemGPS-NP. Thex-axis gives the variable IDs, i.e., the abbreviations for the descriptors
explained in Table 1. They-axis denotes the cumulative explained variance by regression (R2, green) and by cross-validation (Q2, blue) for
the descriptor matrix including the 35 variables (molecular descriptors) after 8 principal components.

Figure 2. Score plot of the three most significant dimensions (t1,
t2, and t3) of ChemGPS-NP, illustrating the general shape of natural
products chemical space, revealing its prominent parametrical
asymmetry. Each sphere represents an object (a compound). Green
spheres (a-e) are illustrated in Figure 3. The first three PCs explain
71% of the variance.
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Reanalysis of the previously mentioned set of natural cyclooxy-
genase inhibitors9 with ChemGPS-NP indicates several interesting
differences in interpretation, as compared to ChemGPS. ChemGPS-
NP is more tuned to catch variations among natural products, and
primarily, the data organize in more distinct clusters. Our conclu-
sions from the previous study agree with what we can interpret
from the present study, but as illustrated in Figure 4, we are now
able to draw more detailed and informative conclusions from more
well-defined clusters, without having to deal with outliers and
extrapolation. This further emphasizes the need for ChemGPS-NP
in natural product related research.

The drug discovery process is today hampered by increasing costs

and high attrition rates, with an overall decrease in the number of
annually registered new chemical entities. One way to try to
overcome these obstacles would be a more efficient selection
process, giving a higher probability of obtaining a lead compound.
As discussed above, the use of evolutionary processes in Nature
as a billion year prescreen is one possibility, but to further improve
this, a method for navigation in chemical space would be necessary.
The benefits of ChemGPS-NP are, in one way, comparable to the
possibilities opened in molecular biology by rigorous application
of the BLAST algorithms.38 These allow, for example, through Web
interfaces, the research community to easily compare sections of
nucleotide or amino acid sequences for homology searching,
identifying genes, or preparing data sets for phylogenetic analyses,
all in huge data sets. It provides compound property description,
clustering overview and property interpretation via the PCA loading
vectors, directly amenable to deriving a global similarity metric.
ChemGPS-NP is a tool tuned for managing the chemical diversity
addressed in natural products research. It forms a framework for
making compound comparison and selection more efficient and
stringent. Physical-chemical properties not directly discernible from
structural data can be discovered and quantified. Different volumes
of chemical space corresponding to specific biological activities
can be identified, which can be used for prediction or validation of
both single structures and large compound sets. ChemGPS-NP also
gives possibilities to interpret evolutionary driven changes in series
of chemical compounds, effectively tracking the evolution of
physical-chemical properties, and not only in modifications of
compound structures. All of these features increase the probability
of hit generation when screening the vast diversity of natural
products in the search for novel bioactive molecules. ChemGPS-
NP is still a heuristic model, and with future use it appears
unavoidable that occasional outliers will show up. However,
applying statistical molecular design procedures has maximized the
probability of a coherent version and, thus, minimized the prob-
ability of novel satellites showing up in the future. Furthermore,
by systematically predicting numerous relevant structures from well-

Figure 3. Molecular structures and ChemGPS-NP coordinates for the selected objects in Figure 2 (a-e). (a) varv F: t1) 46.4, t2)
-10.2, t3) -5.84. (b) 23-(5-Hydroxypentyl)-22-pentatetracontanone: t1) 4.83, t2) -4.52, t3) 7.58. (c) Hexabenzocoronene: t1)
4.33, t2) 12.0, t3) 4.79. (d) Pentazole: t1) -4.82, t2) -2.32, t3) -2.98. (e) Amikacin: t1) 5.01, t2) -3.85, t3) -6.89.

Figure 4. Comparison of the first two dimensions of the predicted
score plots (tPS1 and tPS2) for collection of natural cyclooxygenase
inhibitors9 predicted using (a) ChemGPS and (b) ChemGPS-NP.
More distinct clustering and fewer outliers are obtained with
ChemGPS-NP.
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known sources (i.e., more than one million compounds of biologi-
cally diverse origins) by the ChemGPS-NP, which in a reproducible
manner could predict their property positioning in chemical space
without extrapolation, points toward a robust prediction engine. It
is obvious already from work in progress to implement the model
that ChemGPS-NP has potential to help gain novel chemical and
biological insight in numerous ways.

Experimental Section

All molecular editing and filtering steps were performed with tools
based on Daylight toolkit.39 Cluster analysis was performed using
Daylight fingerprints and a Tanimoto coefficient of 0.7 as similarity
cutoff. Molecular descriptors were calculated from SMILES 2D
representations for all compounds used in this study employing the
software Dragon Professional, version 5.3.40 All multivariate models
were obtained using PCA as implemented in SIMCA-P+ 10.5.33

DModXPS was calculated for all compounds predicted with the
evolving ChemGPS-NP using SIMCA-P+ 10.5.33 D-optimal (onion)
designs36 were generated with the software MODDE 7.41 Design factors
were scaled to unit variance and centered by default prior to the design.
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